Efficient label ordering for improving multi-label classifier chain accuracy
نویسندگان
چکیده
منابع مشابه
Double Layer Based Multi-label Classifier Chain
In multi-label learning, each training example is associated with a set of labels and the task is to predict the proper label set for each unseen instance. The widely known binary relevance method (BR) for multi-label classification considers each label as an independent binary problem. It is ignored in the literature due to inadequacy of not considering label correlations. In this paper, we pr...
متن کاملMLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection
Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...
متن کاملOn the Optimality of Classifier Chain for Multi-label Classification
To capture the interdependencies between labels in multi-label classification problems, classifier chain (CC) tries to take the multiple labels of each instance into account under a deterministic high-order Markov Chain model. Since its performance is sensitive to the choice of label order, the key issue is how to determine the optimal label order for CC. In this work, we first generalize the C...
متن کاملA label distance maximum-based classifier for multi-label learning.
Multi-label classification is useful in many bioinformatics tasks such as gene function prediction and protein site localization. This paper presents an improved neural network algorithm, Max Label Distance Back Propagation Algorithm for Multi-Label Classification. The method was formulated by modifying the total error function of the standard BP by adding a penalty term, which was realized by ...
متن کاملMulti-Label Classifier Chains for Bird Sound
Bird sound data collected with unattended microphones for automatic surveys, or mobile devices for citizen science, typically contain multiple simultaneously vocalizing birds of different species. However, few works have considered the multi-label structure in birdsong. We propose to use an ensemble of classifier chains combined with a histogram-ofsegments representation for multi-label classif...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the National Science Foundation of Sri Lanka
سال: 2019
ISSN: 2362-0161,1391-4588
DOI: 10.4038/jnsfsr.v47i2.9159